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Abstract—In the current state-of-the-art, social robots per-
forming non-trivial tasks often spend most of their time
finding and modeling objects. In this paper we present the
extension of a cognitive architecture that reduces the time
and effort a robot needs to retrieve objects in a household
scenario. We upgrade our previous Passive Learning Sensor
algorithm into a full fledged agent that is part of the CORTEX
robotics cognitive architecture. With its planning capabilities,
this new configuration allows the robot to efficiently search,
pick and deliver different objects from different locations in
large households environments. The contribution presented here
dynamically extends the robot’s knowledge of the world by
making use of memories from past experiences. Results obtained
from several experiments show that, both, the new software
agent and the integrated cognitive architecture, constitute an
important step towards robot autonomy. The experiments show
that the find-and-pick task is greatly accelerated.

I. INTRODUCTION

When social robots are required to complete basic house-

hold tasks, a necessary skill is the ability to explore the en-

vironment, find an object, pick it up and move it somewhere

else, under different contextual situations. The research com-

munity has been very active in the completion of several

variants of basic tasks, such as making pancakes [1], or cloth

folding [2]. To complete these find, pick and deliver type

of tasks, a delicate coordination of several functionalities

is required, including navigation, localization, manipulation

and grasping, speech understanding, planning and object and

human detection and recognition, all of them tied up by

some kind of short and long term knowledge representation.

Robotics cognitive architectures, like the one used in this

work, CORTEX [3], are suitable to achieve the required level

of integration, flexibility and adaptive decision making.
When robots have to find objects in large indoor envi-

ronments, the use of a random search strategy can be too

slow for humans and might frustrate potential domestic robot

users. In order to speed up this process, robots have to

optimize the search process generating hypotheses pointing

them to the most-likely object locations [4], [5], [6]. One

way of generating these hypotheses is by exploiting previous

experiences of the robot as a source of information to weight

the set of candidate places for a search task.
The technique presented in the paper extracts the informa-

tion to infer the potential locations of objects from images
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Fig. 1. The robot Shelly “passively learning” while moving around the
apartment.

acquired by the robot while performing other tasks. We

have designed a new element for the CORTEX architecture

that passively observes the environment as the robot moves,

gathering information about the location of the objects found.

Objects are segmented and detected by this passive learning

agent using machine learning techniques, and the corre-

sponding information is stored linked to their location in the

current representation of the environment. The combination

of geometric and semantic attributes is used to infer probable

object locations when requested by a human. In particular,

we build upon the example of a social robot in a domestic

environment that is asked to fetch and deliver different

objects placed on several tables. The algorithm exploits the

fact that related objects are usually placed together. The

tables to inspect are selected based on the semantic distance

between the object to find and the description of the types

of objects placed on the tables. This helps the robot take

decisions about the location of the objects that have not been

seen yet, improving its usefulness for the human user.

This work has been integrated in a robotic architecture

which enables the robot to generate plans and coordinate dif-

ferent software modules in such a way that object discovery

can become part of more complex tasks. The main contribu-

tion of this paper is the demonstration of how our previous

work on multimodal passive learning [7] can be upgraded to

a software agent, becoming part of a more complex robotics

cognitive architecture -CORTEX- that enables an automated

social robot to deliver objects on demand in a large household
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environment. This integration allows the whole system to

respond to human demands, generating plans to fulfill them.

In doing so, the robot learns the location of objects and uses

this knowledge to improve subsequent searches.

The remainder of the paper is as follows: Section II

presents a review of current semantic mapping approaches

meant to find objects in indoors environments. Section III

introduces the CORTEX architecture, including the multi-

modal passive learning agent, and explains how the planning

of the informed search is conveyed. Section IV presents the

tests performed to validate the system, first evaluating the

passive learning agent and then using an autonomous robot

executing full object search tasks. Finally, Section V presents

the conclusions drawn from the research and some future

lines of work.

II. RELATED WORKS

Semantic mapping algorithms can be categorized accord-

ing to the scale in which they work. Regarding those that

focus on human indoor environments, a distinction can be

done between those focusing on single scenes and those

that target large scale ones. The former reason about an

instance frame with respect to a local coordinate system

while the later progressively annotate a metric map with

semantic information, located with respect to a global frame

of reference.

In relation to single scene annotation, in [8] a model is

presented based on a conditional random field with several

constraints to facilitate hierarchical labeling. It also makes

use of object class hierarchies to overcome uncertainty when

labeling a scene. Relevant objects are extracted in [9], [10] by

processing large input datasets and labeling a geometric map.

This is done building complete object models from partial

3D object views and feature-based recognition procedures.

The objects modeled are kitchen serviceable ones, such as

appliances, cupboards or tables, being of specific significance

for household assistant robots. In our work, instead of

labeling objects we convert this information into location

labels that offer information regarding the information at that

location, i.e., on a certain table.

Regarding large scale semantic mapping, the work in [6]

proposes symbolic representations of qualitative spatial re-

lations. It uses geometric models on these representations

with respect to landmark objects. This information is later

used to decide which location to search first. Likewise, the

works presented in [4], [5] make use of spatial information

for large scale scenarios. They formalize the object search

as a probabilistic inference problem using different priors.

These priors represent several aspects of the scene such as

scene structure, physical constrains or domain knowledge.

By transforming these priors into a probabilistic model they

create hypotheses about possible object locations. These

approaches are similar to ours, as they take into account the

different information to value locations to approach.

Fig. 2. The four main layers of the passive learning agent. The left-
hand side of the vertical line describes the output of each layer in a formal
notation, while the right-hand side shows it visually. The forbidden sign
represents discarded images. Explanations on the outputs are given in the
outer right descriptions.

III. PERCEPTIVE PLANNING ARCHITECTURE

The solution presented here uses a combination of large

scale and single scene approaches coordinated through the

CORTEX architecture. As a first step, a passive fast annota-

tion on the large scale environment is made while the robot

moves around the environment. This enables the robot to

produce hypotheses on where to look for different objects.

When a search task comes, the locations are approached

by the robot following these hypotheses. A second stage of

single scene semantic mapping is then conducted so that the

existence and location of the searched object is verified and

integrated in the world model of the robot.

A. Multimodal Passive Learning Agent

The multimodal passive learning agent is a module that

is designed to speed up the object search process through

the exploitation of robot memories. It works by passively

processing the images that the robot acquires while moving

around the environment, performing different tasks or just

waiting for a command. Images are processed through the

different layers of the agent to give the robot the means to

guess where an object would be most probably located.

The agent implements a processing pipeline of four layers

(see Fig. 2. A first layer, Cognitive Attention (CA), selects

images that contain a table with potential objects on it.

The Cognitive Subtraction (CS) layer, combines the existing

model of the world and the incoming image to segment

the new elements in it. Afterwards, a Convolutional Neural

Network (CNN) layer computes labels for the unknown

regions of the image obtained in the previous step. Finally,

a Semantic Processing (SP) layer uses a learned semantic

model to improve the labels obtained from the CNN and

maximizes the probability of finding the correct place for a

searched object.

1) Cognitive Attention: This first layer of the agent filters

the images that contain a table. Then, it detects the regions

of interest (ROI) corresponding to those tables, and provides

such regions along the information of the table (identifier

and geometrical properties) to the next stage of the pipeline.
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For each image Ii accepted, this layer provides the next

one with a tuple Ti containing the region of interest of the

image that shows the table ROI(Ii), along with table specific

information such as its type (T ), pose (P ), and shape (S).

See Eq. 1 for a formal description of this layer.

CA(Ii) = Ti = (ROI(Ii), (T, P, S)) (1)

In order to estimate if a table lies in the frustum of

the camera, the robot uses a model of the environment.

In our case, as shown in Fig. 3, CORTEX provides the

needed information (the pose of the robot and the tables

in the environment) to select the ROIs containing tables (see

Section III-B for more details on CORTEX).
2) Cognitive Subtraction: The second layer of the agent

performs an additional segmentation step called Cognitive

Subtraction (CS). It takes as input the tuples of the regions

of interest obtained from the previous layer, along with the

table information, Ti, and generates a series of sub-regions

of interest out of each image. These sub-regions, ojt, which

correspond to object proposals, are associated to their table

and constitute the output of this layer. For instance, for one

image i, associated with a table t, this layer will produce a

set of sub-images �Oit = (o1t, o2t, ..., omt) (see 2.-CS layer

in Fig. 2 and Eq. 2 for a formal description).

CS(Ti) = �Oit = (o1t, o2t, ..., omt) (2)

In order to perform this segmentation, this layer uses a simple

pipeline that targets objects lying on tables:

1) A random sample consensus [11] is used to estimate

the plane of the table using the point cloud of the scene

acquired with the RGBD camera. Only points lying

over this plane are considered.

2) The remaining point are segmented using euclidean

distance clustering [12].

3) Candidate object point are transformed to image co-

ordinates and the image region corresponding to those

points is segmented, generating object candidates.

Additional containers can be considered by integrating addi-

tional pipelines in this layer.
3) CNN Object Labeling: The third layer classifies the

ROIs from the previous step. It produces a label lit for each

of the object candidate regions oit obtained from the previous

layer (see Eq. 3 for a formal description and 3.-CNN layer

in Fig. 2).

CNN( �Oit) = �Lit = (l1t, l2t, ..., lmt) (3)

The current implementation uses a very deep Convolutional

Neural Network (CNN) based on deep residual learning [13].

Specifically, a generic training of this CNN, with 152 layers,

on the ImageNet dataset [14] was used.
4) Semantic Processing: The Semantic Processing step

(SP) takes the labels �Lit produced in the previous step for

all the images and groups them according to each table t.
For each table an average semantic vector is produced using

the semantic vector representations of these labels. For each

table t and all labels �Lit of each image i:

�LT = �L1t + �L2t + ...+ �Lpt = (lt1, lt2, ..., ltm, ..., ltk) (4)

First, these labels are transformed into each of their 300

dimensions semantic vector representations making use of

the skip-gram model [15]. These models are two-layer neural

networks that are trained to reconstruct linguistic contexts

of words. Word vectors are positioned in the vector space

such that words that share common contexts in the training

corpus are located in close proximity to one another in the

space. A model trained on texts obtained from the Google

News dataset (with more than 100 billion words) is used.

300 dimensions are used for the vector representation as

it provides good accuracy without dramatically affecting

training [16]. Using this vector representations, an average

semantic vector �SVt is produced for each table t (see step

4.-SP in Fig 2).

Later on, when the robot is asked to find an object with

label lo, the semantic vector representation �SVlo of the label

is computed using the learned skip-gram model. Afterwards,

the semantic similarity SSt to each table t is calculated as

the cosine distance (dot product) of the representation of the

label �SVlo and the semantic vector of the table �SVt. The

higher the value obtained the better result and the closer in

the semantic space. The robot will then approach the tables

in order of higher semantic similarity with the label of the

object searched.

This last step is intended to expand and improve the image

labeling results by using the semantic relationships between

the labels obtained for a specific table. It makes so by taking

advantage of the fact that, in household environments, objects

located next to each other are often semantically related (i.e.,
kitchen utensils are placed together and toys are kept in the

same place).

B. Integration of the Multimodal Passive Learning Agent in
CORTEX

Here we present the deliberative cognitive architecture,

CORTEX, that enables the robot to perform all the steps

of the object search. These steps start by asking the passive

learning agent for object location hypotheses and guiding the

robot through the search, finishing with the verification of the

object classification and its precise location in the scene.

CORTEX is built on top of many developments carried

out during past years, the most relevant being the Active
Grammar-based Modeling architecture (AGM) [17], [18], the

RoboComp framework [19] or the Deep State Representation

concept [20], [18].

1) Agents: Robot’s actions and the resulting modifications

in the internal model that represents the world are carried

out by a set of software modules named agents. Depending

on the current plan of the robot, each agent will have to

execute different actions. In general, the action to be executed

depends on the current step of the plan, but it can also depend
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Fig. 3. The CORTEX architecture along with its agents accessing
and contributing to the maintenance of a shared representation of the
environment and of the robot. Planning and Executive are in charge of
high-level planning activities.

on the remaining uninitiated steps1. Similarly, each agent

can perform modifications in the model, whether these are

the result of the action of the robot or an exogenous event2.

Therefore, depending on the task a robot has to deal with,

different agents will be active.

The following agents take part in the implementation of

the architecture used for the experiments: a Navigation agent

in charge of moving the robot; a Localization agent in charge

of indicating which is the current room where the robot is

located at, and its specific coordinates in it; a Proprioception
agent which continuously updates the angles of all the joints

of the robot in the internal model; an Object agent in charge

of detecting and updating the position of the objects seen

in the scene; a Human agent which detects and includes the

persons nearby into the world model; a Dialog agent which

updates the mission of the robot upon user request; and the

new Multimodal Passive Learning agent. Fig. 3 shows the

architecture along with the world model and the agents that

interact with it.

2) Nodes and Associated Actions: The plan that a robot

uses to fulfill its mission depends on its domain knowledge

(i.e., the actions that can be performed by the robot), but

also on the internal world model of the robot. In CORTEX

the world model is a shared hypergraph named Deep State

Representation (DSR) –i.e., a graph where pairs of nodes

can be linked multiple times. DSRs have the particularity

that both, nodes and edges can have any number of addi-

tional attributes. These attributes are used to encode metric

information which is not taken into account by the planner.

1Lets assume that a robot located in a room r1 is supposed to approach
a table t1, located in room r2 to fetch a bottle of water. A plan could
comprise, moving to room r2, approaching table t1, and detecting a bottle
of water on it. Lets also assume that another bottle of water gets into the
field of view of the robot as it moves towards room r2. Iff the bottle of
water detector is activated before approaching table t1, it could be detected
and the plan could be optimized using such bottle of water instead.

2Exogenous events are those which are not the result of a deliberate action
of the robot, e.g., a “low on battery” event.

The domain of the robot (i.e., the set of actions that can

be executed, along their preconditions and consequences) is

expressed using a grammar similar to those used to define

formal languages. These grammars are sets of grammar rules

that are used by the executive to compute the plans to achieve

the missions of the robot. Despite there are additional rules

designed perceive other objects and rules for other different

activities such as human-robot interaction or manipulation,

the five following rules have special interest in this work:

• imagineObjectInPosition is used to imagine a “proto-

object” in the most-likely table so it can later be

inspected and confirmed or discarded. It generates a

protoObject node associated to an already existing table.

• setObjectReach is used to get close to objects such as

tables or mugs.

• changeRoom is used to make the robot change from a

room to one of the adjacent ones.

• verifyImaginaryObject is used to confirm that a pre-

viously imagined “proto-object” has been successfully

modeled as an actual object. It basically changes the

type of the node from “protoObject” to “object”.

IV. EXPERIMENTS

A set of experiments have been made with a real robot in

an apartment-like scenario with two rooms. The robot used

is an omnidirectional manipulator enabled with a camera, a

kinnect sensor and a 2D LRF. Five tables where disposed

along the apartment containing five types of objects: table

A contains hardware tools, table B has a computer and

other tech gadgets, table C has office supplies, table D has

kitchen utensils and table E contains different toys. In a

first training step the robot wandered around the apartment

in order to build the robot “memory”, simulating a previous

experience. Afterwards, the effectiveness of the multimodal

learning agent was tested against other state-of-the-art label-

ing processes. Final tests where performed with the robot

running whole integrated CORTEX architecture.

A. Multimodal Passive Learning Agent Tests

The multimodal passive learning agent was tested against

a combination of state-of-the-art segmentation and CNN

classification algorithms. The classification algorithms used

for the test are the following:

• GoogleNet [21] is a 22 layers deep network (27 if pool-

ing is taken into account) that makes use of “inception

modules” which basically act as multiple convolution

filter inputs, that are processed on the same source,

while pooling at the same time. Another training of this

network but without relighting data-augmentation was

also tested (GoogleNet2).

• AlexNet, by Krizhevsky et. al. [22], consists of eight

layers, of which five are convolutional layers, with some

of them being followed by maxpooling layers. The other

three layers are fully-connected layers with a final 1000-

way softmax.

• Very Deep Convolutional Networks by Simonyan et al.,
presented in [23] (VGG16 in Table I). Consist of a series
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Method Success Rate

Multimodal Passive Learning Agent 0.75
TH + GoogleNet 0.35
TH + GoogleNet2 0.35

TH + AlexNet 0.35
TH + VGG16 0.6

MCG + GoogleNet 0.5
MCG + AlexNet 0.15
MCG + ResNet 0.55
MCG + VGG16 0.55
CS + GoogleNet 0.45
CS + GoogleNet2 0.6

CS + AlexNet 0.2
CS + VGG16 0.45

R-CNN 0.4

TABLE I

NORMALIZED SUCCESS RATE OF THE OBJECT SEARCH TEST OF THE

MULTIMODAL PASSIVE LEARNING AGENT COMPARED TO DIFFERENT

COMBINATIONS OF SEGMENTATION ALGORITHMS AND CNNS.

of thirteen convolutional layers (also with maxpool in

between), followed by three fully connected layers.

• Regions with Convolutional Neural Network (R-

CNN) [24] performs localization and classification

of the objects in the image. It generates category-

independent region proposals, then a convolutional net-

work extracts a fixed-length feature vector from each

region and finally the third module, which is a set of

class-specific linear SVMs, scores each feature vector.

Since it performs localization by itself no previous

segmentation step was added to this network.

The trainings used for these networks are generic trainings

provided by their authors. They have been combined with

the following three main segmentation algorithms:

• Top-Hat [25], a morphology transformation based algo-

rithm commonly used for segmentation purposes.

• Multiscale Combinatorial Grouping [26], an algorithm

for bottom-up hierarchical image segmentation.

• The Cognitive Subtraction algorithm explained in Sec-

tion III-A as the second layer of the passive learning

agent.

To test the system it was asked to locate 20 objects

selected randomly among the five tables setup explained at

the beginning of this section (tables A, B, C, D and E). If

the first choice of the algorithm was the correct table it was

counted as a success, otherwise it was considered a failure.

As it can be seen in the results of Table I, the multimodal

passive learning agent outperforms the rest of the state-of-

the-art solutions. The low quality of the images obtained

in the passive learning process generate very bad results

in regular segmentations and CNN combinations, while the

semantic relationship that the agent uses helps improve its

successful results.

B. Perceptive Planning Architecture Tests

Three methods are compared on these experiments: ran-

dom selection, a traveling salesman policy, and the proposed

perceptive planning architecture. The robot was asked to find

Fig. 4. Average success rate when trying to find the correct table for each
of the three methods. I.e. the first attempt is the average of times the correct
table was selected the first by the algorithm when trying to find the object.

Fig. 5. Average time spent to find the object for each of the three methods
tested.

each object from the five different tables and the success

rate and time spent by the robot was measured. The success

rates obtained in the experiments where 0.36, 0.35 and 0.9
for the random, traveling salesman and perceptive planning

architecture solutions, respectively. The average time that the

robot used to approach the correct table was of 82.68, 61.0
and 26.13 seconds for the random, traveling salesman and

perceptive planning architecture solutions.

Figure 4 shows a graphic specifying how the success rate

evolved with the different methods as attempts are made for

all the objects considered. It can be appreciated in Fig. 4

that the success rate evolves similarly as they keep trying

for the random and traveling salesman policies while the

performance of CORTEX using the passive learning agent

was much better since the first attempt.

Figure 5 provides boxplots for the time spent by the robot

using each of the methods to find the objects. Although

random and traveling salesman have similar success rates

they differ in time as the later policy always choose the

shorter paths.

V. CONCLUSIONS AND FUTURE WORK

A new extension to the CORTEX architecture that pro-

vides an effective way to speed up object search has been

presented. The improved functionality has been tested in a

real scenario with a mobile manipulator.

The results shown in the experiments section demonstrate

the effectiveness of the assumptions of the passive learning
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agent. The agent was able to successfully predict the location

of objects, outperforming state-of-the-art CNN algorithms.

On the other hand, the results on the whole architecture that

integrates the scene labeling verification step in CORTEX

where also positive. The architecture outperformed other two

table approaching techniques, both in success rate and in time

taken to find the object.

As future a work, it would be interesting to integrate

the search task as part of a more complex plan. Testing

the solution with a higher level process that involves more

actions would help us provide the demonstration of the real

utility of the perceptive planning architecture. Currently, the

architecture only supports one search at a time, but when

higher tasks are taken into account it might be interesting to

make the robot able to search and reason about more than

one object at a time. Also, the distance to the different tables

is not taken into account, for future releases of the system

this information could be used as an input to help the robot

take a better decision on which place to visit next.

Misplaced objects make the robot fail on its initial attempts

to fetch them. It would be interesting to develop an extra

passive mechanism able to spot these misplaced object and

take them as an exception when performing the object search.

Finally, the agent integrated in the architecture is specific

for objects lying on tables. A good improvement would

be to enhance this agent to automatically detect the object

container and to proceed accordingly, i.e., changing the

pipeline of the CS layer accordingly.
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